

A2220015

Wind station F2000

Contents

Applications	1
Features	1
Working	1
Dimensions	2
Technical specifications	2

Applications	Measurement of wind velocity and direction. In most Fancom F2000 controllers these values can be read out or can be used as an influence on the various controls.
	The wind station is supplied including the mounting bracket for the sensors, connection box, 2 mounting brackets (outer wall) and 2 m mast.
Features	 Extra corrosion resistant Very low threshold (start velocity) Durable, long working life Very accurate and linear
Working	

Anemometer

The Fancom velocity sensor is based on the Hall-effect (block signal). Fancom controllers will convert this signal into a wind velocity read out in m/s.

Wind vane

The Fancom wind vane is based on a signal from a potentiometer. The Fancom controllers will convert this signal into 8 different wind sections

 $\mathsf{N}-\mathsf{NE}-\mathsf{E}-\mathsf{SE}-\mathsf{S}-\mathsf{SW}-\mathsf{W}$ - NW :

Dimensions

Technical specifications

Lightweight vane

SENSORS

Potentiometer Life expectation Azimuth Connection Linearity Resistance value Material housing Material vane blade Material bearings Mounting hardware Operating temperature

Lightweight anemometer

Air velocity range Velocity threshold Measuring principle Pulses per revolution Connection Power supply Material housing Material shaft Material bearing Material magnet Corrosion resistance Operating temperature % humidity Long life type >20 x 10⁶ revolutions 0-360° To analog input controller ± 1% 5 kOhm ± 10% POM, black Glass fiber epoxy Oil bronze Stainless steel -30°C to +80°C

0..50 m/s 0,55 m/s Hall-effect 4 To digital input controller 4,5..30 Vdc Polyacetal Stainless steel Rulon Ceramic Excellent -40°C to +80°C 0..100%

Fancom